

History

- Established 1985
- Coordinator
- Specialists: Genetics, Otolaryngology, Speech and Hearing, Plastics, Orthodontics, Pediatric (MD + DDS), OMFS, Parent advocate, Social Work etc.
- Team conferences (monthly)

Stony Brook Children's

Mission

- To provide patient centered care for children with CP/CF deformities
- To guide and support families to negotiate financial and social barriers

Stony Brook Children's

What We Do

- Provide diagnostics
- Prepare families for the timing and coordination of diagnostics and services
- Provide services
- Assist families and Communicate with managed care
- Assist primary care physicians
- Refer to specialists
- Educate community

Stony Brook Children's

Team Presentations

Genetics

- Feeding/Lactation Specialist
- Pediatric Dentist
- Plastic Surgeon
- Otolaryngology (ENT)
- Audiology
- Orthodontics Maxillofacial Surgery Prosthodontist

Speech

- Social Work

- Caregivers
- Stony Brook Children's

What Causes this Condition?

In most cases, the exact cause of clefting is unknown.

There seems to be 2 interrelated factors:

Our Genes The Environment

What Causes this Condition?

In most cases, the exact cause of clefting is unknown.

There seems to be 2 interrelated factors:

Our Genes The Environment

Environment

This term refers to all those factors that are not in the genes and chromosomes. It can be exposure to drugs, chemicals and infectious agents as well as where the baby begins to grow in the uterus.

 These include heavy alcohol consumption, smoking and certain meds for acne and others necessary to control epilepsy in the mother. To cause a cleft, an environmental exposure must have occurred before the formation of these structures. Anything that happened after this time has no bearing on the cause of the cleft.

hat the cleft is isolated, not part hildren who have clefts do not l	of a syndrome. Majority of have other genetic
roblems. TOOL	<u>s</u>
History - Prenatal & medical Family history - 3 generation pedigree Physical examination Further testing - Radiology - Genetic testing as indicated	
Determination of Recurrence F	Risk

Examples of Genetic Causes	
Genes • Single Gene Defects - Dominant - Recessive - X-Linked • Chromosomal Defects - Trisomy 13 (Patau) - 5p- (Cri-du-chat) - 4p- (Wolf-Hirschhorn Tools Chromosome analysis, Chromosome	
MicroArray, Gene Panels, Whole Exome Sequencing via blood, amniotic fluid or tissue/saliva.	

A Positive FISH Study on an Individual with Velocardio Facial Syndrome Using a 22q11 Probe

 Treacher Collins Syndrome.

 • Child usually will show normal intelligence. Examination of the infant may normal a variety of problems, including:

 • Abormal versities of the infant may normal a variety of problems, including:

 • Abormal versities of the infant may normal a variety of problems, including:

 • Abormal versities of the infant may normal a variety of problems, including:

 • Abormal versities

 • Easts het face.

 • Sime main a variety of problems in the face.

 • Mormally formed east.

 • More fig.

 • Decreased systess on the lower eyelld

 • Greater facts can be done to look for mutations in the TCS1 gene

*

FOLIC ACID

ALL WOMEN OF CHILD-BEARING AGE SHOULD BE ON A FOLIC ACID SUPPLEMENT - 0.4 MG OR

FOR HIGH RISK, 4 MG

3 months preconception through the second trimester

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

TO SUMMARIZE:

diatric Dentist's	s Role:
Pre-Operative Role	Post-Operative Role
Parental councelling for diet and oral hygiene maintenance	Post-operative oral hygiene maintenance through professional oral hygiene maintenance aids
Early preventise advise for the child for caries prevention	Preventive care: topical fluoride and sealants application
Construction of feeding plate	Restorative care for the carlous teeth and endodontic treatment for involved teeth
Presurgical urthopedies for correction or rotated premanila	Orthodontic correction of minaligned such
Insule positive autitude towards the demail treatment in a child by behaviour shaping or wordilization as menuted	Palatal plate for entraction of speech problems

Oral Hygiene	
Caries Risk Factors:	
Enamel defects (hypoplasia)	
Parents overwhelmed, oral health low priority	Orthodontic appliances
Use of an acrylic obturator	Significant scarring / malalignment
Longer oral clearance times	cleft area more difficult to clean
Permissive parenting, highly carlogenic diet, less-than-adequate oral hygiene home care	Oral aversion / fear of toothbrushing
	Cognitive or motor impairment

Oral Hygiene	63
Periodontitis Risk Factors	123
Poorly developed osseous support / connective tissue attachment	-
Abnormalities of size, shape, and number, malalignment	1250
Inadequate oral hygiene	-
Orthodontic appliances	
Subgingival restorations	1 1 1 1 1 1 1 1
Sporadic and infraguent dental avaluations	State of the second

Stony Brook School of Dental Medicine

References

Arthur Nowak, John R. Christensen, Tad R. Mabry, Janice Alisa Townsend, Martha H. Wells. *Padiatric Dentistry : Infancy Through Adolescence*. Vol Sixth edition. Chapter 5, Matthew K. Geneser and Veconsathpurush Allareddy. Saunders; 209.

Add El-Ghafour M, Aboulhasan MA, Fayed MMS, et al. Effectiveness of a Novel 3D-Printed Nasoalwolar Molding Appliance (D-NAM) on Improving the Maxillary Arch Dimensions in Unitateral (CHL Jan d'Palate Infants: A Randomized Controlled Trial. The Cleft Palate Craniofacial Journal, 2020;57(12):1370-1381. doi:10.1177/1025665620324321

de Soura FT da R. Gonçalves-Wilhelmsen NCV, Rosa RT, et al. Oral Colonization and Vindience Factors of Candida spp. in Babies With Cleft Palate. The Cleft Palate Cranifostial Journal. 2022;59(8):1056/1056, 2016;101:1071/0556656211030437 Grayson BH, Maull D. Nascolwealar Molding for Infants Born with Clefts of the Lip, Alveolus, and Palate. Semin Plast Surg. 2005 Nov;19(4):294–301. doi: 10.1055/s-2005-925002. PMCID: PMC2884248.

Stony Brook School of Dental Medicine

References

Jeffrey A. Dean, James E. Jones, Brian J. Sanders, LaQuia A. Walker Vinson, Juan F. Yepes. McDonald and Avery's Dentistry for the Child and Adolescent. Vol Eleventh edition. Chapter 24, LaQuia A. Walker Vinson, Tasha E. Hall, James E. Jones and Roberto L. Flores. Elsevier 2022.

Jones JE, Kerkhof RL. Obturator construction for maxillary orthopedies in eleft lip and palate infants, *Quintessence Dent Technol.* 1984;8:583–586

Jamet annual, contenter ben Technol 1990,000 - 900 Lazd V Zumbo G Guaragna M. Di Carlo G, Farado G, Shaedotti GL, Bossù M, Vozza I, Polimeni A. The Kole of the Pediatric Dentist in the Multidisciplinary Management of the Ceft LJP Palate Patient. In J. Evivrone S& Public Health. 2021 Sep 8/36(5):948/7. doi: 10.3390/lerphi38/39487. PMID: 24674411; PMCD: PMCG475068. Yilmaz HM, Hatiopalu S, Erden B, Canj K, Kairi T. 2020. Adherence frequency of Candida Albicars on naseavicelar molding (NAM) appliance. J Stomatol Oral Maxillofae Surg Nov 12:6(2):472-477.

•	Stony Brook Cleft Palate- Craniofacial Center • 38 years of service • Comprehensive, centralized patient care • Continuity, long-term follow up • Our overarching goal is outstanding outcomes for patients and parents in Suffolk County	 Multidisciplinary Team Approach Genetics Feeding/Lactation Speech Audiology Otolaryngology Dentistry Orthodontics Prosthodontists Oral Surgery Social Work Plastic Surgery 	
	Com Brock Children's	 Parents 	

Cleft Lip and Palate

• Incidence: 1/700 births worldwide • Can cause difficulty with:

Eating

- Breathing
- Hearing
- Speaking
- Social integration
- Thriving
- Stony Brook Children's

- · Birth: Diagnosis, genetics, feeding, +/- presurgical orthopedics
- 3-6 months: Cleft lip repair
- 9-18 months: Cleft palate repair and myringotomy tubes, speech therapy
- 4-6 years: Pharyngoplasty if needed
- 5-6 years: Minor lip/nose revision if needed
- 8 years: Closure of alveolar cleft and orthodontic treatment
- 16-18 years: Orthognathic surgery if needed
- 16-18 years: Scar revisions +/- cleft rhinoplasty if needed

Stony Brook Children's

 Congenital deformity of the lip and often nose secondary to abnormal development
 Missing and abnormal tissue
 Shortened philtrum
 Abnormal orbicularis oris muscle
 Abnormal vermilion
 Nasal deformity

Alar base malposition
 Bony deformity (complete clefts)

Surgical Goals

•Lip: normalize length, place scar along natural contours •Orbicularis: re-establish continuity across cleft •Alar base: raise, project •Nasal tip: narrow and elevate slumped lower lateral cartilage •Septum: Centralize

Stony Brook Children's

.

Associated Syndromes

- Velocardiofacial (DiGeorge) Syndrome
 - Deletion of 22q11.2
 - · Congenital heart disease
 - · Hypoplastic thymus or athymic
 - Immune issue
 Hypocalcemia
 - Hypocalce
 - Speech issues
- Trisomy 13 (Patau Syndrome)
 Trisomy 18 (Edward's Syndrome)
- Stony Brook Children's

Submucous Cleft

- Incidence 2-8/10,000
 Failure of fusion of palatal musculature, while overlying mucosa intact
- Zona pellucida Bifid uvula, notched hard
- palate • Rarely, can manifest as VPI

Stony Brook Children's

Neligan Ed., Plastic Surgery, 2018

- Failure of complete closure of nasopharynx from oropharynx leads to air escape
- Manifests as hypernasal speech
 Children develop maladaptive speech patterns to compensate
- Early palate repair, before speech development is essential

Stony Brook Children's

Cleft Palate Repair Goals Timing for Palate Repair Achieve complete and intact closure Controversial of the palate Very early repair (3-6 months) Nasal mucosa Early repair (6-18 months) Muscle Oral mucosa Improved speech Separate oral and nasal cavities Improved hearing Restore velopharyngeal function Impaired midface growth Normal swallow **CLEFT PALATE REPAIR** Normal hearingOptimize maxillary growth Delayed repair (>24 months) Impaired speech Prevent fistula formation Improved midface growth Stony Brook Children's Stony Brook Children's Stony Brook Children's

<section-header><list-item>

 • Dissection of musculature from abnormal attachmenta and re-approximation in the midline
 • We want the frame of the sector o

Alveolar Bone Grafting/rhBMP2

Stony Brook Children's

Stony Brook Children's

Stony Brook Children's

Stony Brook Children's

Primary Dentition (2-byrs)
ESTABLISH TYPE OF OCCLUSION
ESTABLISH SKELETAL GROWTH TYPE
CHECK FOR MISSING TEETH/SUPRANUMARY
STAGE OF DEVELOPMENT OF TEETH
DENTAL ARCH WIDTH AND SHAPE ISSUES
OCCLUSAL FUNCTION AND SHIFTING BITE
IDENTIFY FUTURE SURGICAL ISSUES
Richard Faber DDS Stony Brook Children's

Introduction

- Cleft lip and palate is one of the most common congenital anomalies.
 Treatment will be dictated by its severity and usually not completed until the patient's second decade.
- Multidisciplinary management among the various specialties is essential to achieving optimal results.

Role of the Prosthodontist I thas changed significantly over the years. Definitive prosthetics are usually one of the final therapies and they attempt to reduce any remaining anatomical or functional deficiencies.

- In the past, bulky removable prostheses were often necessary to replace
 missing teeth and correct vertical/horizontal discrepancies.
 Fortunately in recent years these have decreased with more effective
- Fortunately in recent years these have decreased with more effective surgical and orthodontic treatments in the multidisciplinary team settings.

University Hospital at Stony Brook
Michael Proothi, DMD, MD, FACS Generative Visioner Dearment of the distributed Surgery Server Teach University States of Conditional Socialized Server States State

- Children with cleft palate are at a higher risk for ear problems primarily due to dysfunction of the Eustachian tube, which results from structural and muscular abnormalities associated with the cleft
- ETD is nearly universal in infants and young children with an unrepaired cleft palate.
- Majority continue to have ETD even after cleft palate repair, though some improve with age.
- ETD often leads to chronic otitis media with effusion (OME) and conductive hearing loss.

- The tensor vell palatini (TVP) muscle originates from the skull base (sphenoid bone) and inserts into the palatine aponeurosis of the soft palate.
- The levator veli palatini (LVP) muscle runs from the skull base (temporal bone) and also inserts into the soft palate.
- These muscles coordinate to lift the soft palate and open the Eustachian tube during swallowing and yawning.
- The TVP is the primary muscle responsible for opening the Eustachian tube, pulling it laterally
- pulming it laterany in individuals with cleft palate, the palatal muscles, including the levator veli palatini (LVP) and tensor veli palatini (LVP), are abnormally oriented. Instead of inserting into the soft palate, these muscles are often directed anteriority, attaching to the posterior edge of the hard palate

- the levator veli palatini muscle the elevation of the palate and medially rotating the torus tubarius.
- the tensor veli palatini muscle→the excursion of the anterolateral wall.

- Tubal closure depends on the adhesion of the intraluminal mucous blanket, elastic forces of the supporting tissues, and hydrostatic pressure of venous blood. The position of the Ostmann fat pad in the posterolateral half of the tube enables it to assist in restoring the tube to its closed position.
- Although under normal conditions, the middle ear maintains a <u>very</u> slight negative pressure a few millimeters of H2 O lower than the <u>nasopharyns</u>, unless the tube periodically opens, the absorption of gas would result in a <u>large negative pressure differential</u>.
- Middle ear baroreceptors may have a greater role in eustachian tube function than mechanoreceptors
- More recent evidence, however, does suggest that mechanoreceptors in the tympanic membrane may also aid in pressure equalization

- Mucin (major component of the mucous secretions) lubricates the epithelial surface and traps bacteria and viruses. Mucin genes (9 human mucin genes have been identified), particularly MUCSAC, have been found to be upregulated in otitis media.
- The middle ear mucosa and respiratory epithelium of the tube are covered with clia that transport the mucous blanket from the tympanic orifice of the tube toward the nasopharynx.
- The density of cliated and goblet cells gradually increases in a distal and inferior direction. It has been suggested that the lower half of the tube is principally involved with clearance of the muccellary blanket, whereas the <u>upper half is</u> important to pressure equalization and gas exchange.
- Tube transport is an active process that is not gravity dependent
 The *dilary* beat frequency in the middle ear and is affected by the viscosity of the mucus and pathogens from the middle ear and is affected by the viscosity of the
- mucus and pathogens from the middle ear and is affected by the <u>viscosity of the</u> mucus. Conditions of hyperviscosity—such as those found in sinusitis, middle ear
- Conditions of hyperviscosity—such as those found in sinusitis, middle ear effusions, and cystic fibrosis—lead to reduction in beat frequency and efficiency of muccollary clearance.
- · After viral damage, ciliated cells may take 4 weeks to regenerate.

- · Other the causes of ETD;
- Laryngopharyngeal reflux
- Immunodeficiency
- Allergies/Samter's (aspirin sensitivity, nasal polyps, asthma)
- adenoid-like tissue in the tubal tonsil and tubal lumen
- Nasopharyngeal mass

 In craniofacial anomalies;
 The levator and tensor veli palatini muscles may be inherently weak or underdeveloped.

must contract in order to dilate the lumen.

 The most commonly observed abnormality is decreased action of the tensor veli palatini muscle, impairing the excursion of the anterolateral wall.
 There may even be discoordination. The levator muscle has been observed to relax prematurely, eliminating the stable scaffold by which the tensor muscle

Air pressure buildup Trapped Ital Blockage Entrome Bookage Entrome Entrome Entrome Entrome

Questions?

Thanks!

